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HYDROELASTIC BEHAVIOR OF A FLOATING PLATE IN WAVES

UDC 532.591L. A. Tkacheva

The behavior of a floating semi-infinite plate in surface waves incident normally to the edge of the
plate is studied. We used an analytical solution of this problem obtained earlier by the Wiener–Hopf
technique. In this paper, we study the distributions of displacements, deformations, and pressure over
the plate as functions of the dimensionless parameters of the problem (reduced rigidity and depth)
and their asymptotic distributions for large and small wavelengths.

The model of a floating elastic plate has been used previously in studies of the behavior of an ice sheet [1, 2].
At present, this problem is of interest in connection with the design of artificial islands and floating platforms used for
various purposes. Existing numerical methods yield reliable results only for large and intermediate wavelengths and
are inadequate for short incident waves. There are a number of analytical solutions for a semi-infinite plate obtained
by the Wiener–Hopf technique [3–6]. However, in all the paper cited, the solution depends on two constants, which
are determined from a system of linear algebraic equations. The coefficients of the system have a complicated form.
In [7], the system was solved, an analytical solution for normal wave incidence on a plate in a liquid of finite depth
was obtained by the Wiener–Hopf technique, and simple exact formulas for reflection and transmission coefficients
and an expression for the velocity potential were derived. However, in [7], we studied only the far field. The present
paper focuses on the behavior of the plate: distributions of displacements, strains, and pressure over the plate.
Similar results for an infinitely deep liquid are presented in [8].

Formulation of the Problem. We consider the potential flow of an ideal incompressible liquid of depth H.
The surface of the liquid is partly covered with a semi-infinite thin elastic plate, and the rest of the liquid is free.
A plane progressive wave of small amplitude propagates at right angle to the edge of the plate, and the wavelength
far exceeds the plate thickness. The problem is solved in a linear approach. We introduce Cartesian coordinates
(x, y) with the origin O at the plate edge, and the Ox axis directed along the plate perpendicular to its edge. The
draught of the plate is neglected so that the boundary conditions are displaced to the undisturbed free-surface level.
The velocity potential ϕ satisfies the Laplace equation ∆ϕ = 0 (−H < y < 0).

Let us introduce the following dimensionless variables: ϕ′ = ϕ/(A
√
gl), x′ = x/l, y′ = y/l, t′ = ωt,

p′ = p/(ρgA), H ′ = H/l, and l = g/ω2. Here A is the incident-wave amplitude, l is the characteristic length, g is
the acceleration due to gravity, t is time, p is the pressure, ρ is the density of the liquid, and ω is the frequency
of the incident wave. Below, the primes are omitted. The dependence of all functions on time in dimensionless
variables is determined by the multiplier e−it. The potential ϕ is written as

ϕ = ϕ0 + ϕ1, ϕ0 = eiγx cosh (γ(y +H))/ cosh (γH),

where ϕ0 is the potential of the incident wave, ϕ1 is the diffraction potential, and γ is the wavenumber satisfying
the dispersion relation for surface waves: γ tanh (γH)−1 = 0. Then, we can formulate the following boundary-value
problem for the potential ϕ1 [7]:

∆ϕ1 = 0 (−H < y < 0, −∞ < x <∞),

∂ϕ1

∂y
= 0 (y = −H, −∞ < x <∞);
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∂ϕ1

∂y
− ϕ1 = 0 (y = 0, x < 0); (1)

(
β
∂4

∂x4
+ 1− δ

)∂ϕ1

∂y
− ϕ1 = Beiγx (y = 0, x > 0); (2)

∂2

∂x2

∂ϕ

∂y
=

∂3

∂x3

∂ϕ

∂y
= 0 (x = 0, y = 0).

Here β = D/(ρgl4) and δ = ρ0h/(ρl) are dimensionless parameters of the problem, ρ0 and h are the density and
thickness of the plate, respectively, and B = δ − βγ4. In addition, the radiation conditions at the limit as |x| → ∞
and the regularity conditions at the plate edge must be satisfied, i.e., the energy must be limited locally. The above
assumptions imply that δ � 1. Below, the value of δ is set equal to zero.

Analytical Solution of the Problem. An analytical solution of the problem for the potential ϕ1 was
obtained by the Wiener–Hopf technique in [7]. We introduce the dispersion functions K1(α) for the free water
surface and K2(α) for the water under the plate. From boundary conditions (1) and (2), we find that for the free
water surface, the dispersion function has the form K1(α) = α tanh (αH) − 1 and for the liquid under the plate,
it is written as K2(α) = (βα4 + 1)α tanh (αH) − 1. The dispersion function for water has real roots ±γ and a
countable set of purely imaginary roots ±γj (j = 1, 2, . . .), which are symmetric about the real axis. The second
dispersion relation (for the liquid under the plate) has two real roots ±α0, four complex roots ±α−1 and ±α−2,
and a countable set of purely imaginary roots ±αj (j = 1, 2, . . .). The root α−1 is located in the first quadrant, and
the root α−2 is located in the second quadrant; α−2 = −ᾱ−1.

Let us consider one-sided Fourier transforms for the diffraction potential ϕ1:

Φ+(α, y) =

∞∫
0

eiαxϕ1(x, y) dx, Φ−(α, y) =

0∫
−∞

eiαxϕ1(x, y) dx.

As was shown in [7], Φ+ and Φ− are analytic in the regions S+ and S−, respectively (S+ is the half-plane Imα > −c
with cuts that exclude the points −α0 and −γ, S− is the half-plane Imα < c with cuts that exclude the points α0

and γ, and the value of c corresponds to the smallest imaginary set of roots α−1, α1 [7, Fig. 3]).
Let us introduce the function K(α) = K1(α)/K2(α). Following the Wiener–Hopf technique, we must

factorize the function K(α), i.e., write it as K(α) = K+(α)K−(α) [the functions K+(α) and K−(α) are regular in
the regions S+ and S−, respectively]. We define the functions K±(α) by the following expressions [7]:

K±(α) =
(α± γ)g±(α)√

β(α± α0)(α± α−1)(α± α−2)
, g±(α) = exp

(
± 1

2πi

∞∓id∫
−∞∓id

ln g(x)
x− α

dx
)
, d < c,

g(x) = K(x)β(x2 − α2
0)(x2 − α2

−1)(x2 − α2
−2)/(x2 − γ2).

In [7], for the velocity potential ϕ, we obtained the representations

ϕ(x, y) = eiγx
cosh (γ(y +H))

cosh (γH)
− BK−(−γ)

2πiγ2

∞∫
−∞

e−iαx
cosh (α(y +H))K+(α)α2

cosh (αH)(γ + α)K1(α)
dα; (3)

ϕ(x, y) = eiγx
cosh (γ(y +H))

cosh (γH)
− BK−(−γ)

2πiγ2

∞∫
−∞

e−iαx
cosh (α(y +H))α2

cosh (αH)K−(α)(γ + α)K2(α)
dα. (4)

The integration contour is entirely in the domain of intersection of the regions S+ and S−.
Plate Deflection and Elevation of the Free Boundary. The vertical displacement of the upper surface

of the liquid is calculated by the formula ηt = ϕy [7]. Hence, we have η(x) = iϕy(x, 0).
Let η+(x) be the vertical plate displacement. Using representation (4), we obtain

η+(x) = ieiγx +
βγ2K−(−γ)

2π

∞∫
−∞

e−iαx
α3 tanh (αH)

K−(α)(γ + α)K2(α)
dα.
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The integrand is analytic in the lower half-plane except in the poles at −γ and −αj (j = −2,−1, 0, . . .). The residue
at the point −γ is compensated for by the incident wave. Hence,

η+(x) = −iβγ2K−(−γ)
∞∑

j=−2

eiαjx
α3
j tanh (αjH)

(γ − αj)K−(−αj)K ′2(−αj)
. (5)

As follows from Eq. (5), the vertical displacements of the plate are caused by a transmitted wave with wavenumber α0

and edge effects, which decay exponentially away from the edge. We note that in a liquid of infinite depth, edge
effects decay in proportion to x−4 [8].

The wavelength in the plate λ in dimensionless variables is defined by the formula λ = 2π/α0. At β � 1,
α0 ' γ and the wavelength in the plate is the same as that of the incident wave. With increase in β, the value of
α0 decreases, and the wavelength in the plate increases. As β →∞ (this case corresponds to short incident waves),
α0 → 0. In dimensional variables, the wavelength in the plate is 2πl/α0. Let us introduce the characteristic length
L = (D/(ρg))1/4 [9]. Because α0 ∼ (βH)−1/6 as β → ∞, the wavelength in the plate has order O(l1/3L2/3H1/6).
Thus, as β →∞, the wavelength in the plate tends to zero.

After the substitution α3
j tanh (αjH) = −K1(αj)/(βα2

j ) in Eq. (5), we write the expression obtained as an
integral. Then, for the edge displacement, we obtain

η+(0) =
βγ2K−(−γ)

2π

∞∫
−∞

K1(α)
α2K−(α)(γ + α)K2(α)

dα =
βγ2K−(−γ)

2π

∞∫
−∞

K+(α)
α2(γ + α)

dα.

The integration contour selected on the real axis is passing below the points α0, 0, and γ and above the points
−α0 and −γ. The last integral is calculated using the theory of residues. The integrand is analytic in the upper
half-plane except in the multiple pole at zero. We obtain a simple formula for the vertical displacement of the plate
edge:

η+(0) = iβγK+(γ)[K ′+(0)−K+(0)/γ]. (6)

Since K(0) = 1 and K+(α) = K−(−α), we have K+(0) = K−(0) = 1. Then, Eq. (6) is written as

η+(0) = iβK+(γ)[γK ′+(0)− 1].

The elevation of the free boundary η−(x) is found using representation (3):

η−(x) = ieiγx +
βγ2K−(−γ)

2π

∞∫
−∞

e−iαx
α3 tanh (αH)K+(α)

(γ + α)K1(α)
dα.

The integrand is analytic in the upper half-plane except in the poles at γ and γk (k = 1, 2, . . .). As
K−(−α) = K+(α), we have

η−(x) = ieiγx +
iβK2

+(γ)
2K ′1(γ)

e−iγx + iβγ2K+(γ)
∞∑
j=1

e−|γj |x
γ2
jK+(γj)

(γ + γj)K ′1(γj)
. (7)

In (7), the first term represents an incident wave, the second term represents a reflected wave, and the remaining
terms correspond to the edge effects (modes that decay exponentially away from the edge).

The distributions of plate displacement and free-boundary elevation with variation of the parameter β were
studied numerically. For all values of β, maximum displacements of the plate occur near the edge. The calculations
showed that for all values of β, the edge effects decay rather rapidly, so that at a distance of half as much again
the transmitted wavelength, the correction for the edge effects does not exceed 0.1%. Figure 1 shows distributions
of plate displacements along the x axis for various values of β and H. For β = 10−4, the curves corresponding
to H = 1 and 100 coincide. As can be seen from Fig. 1, the effect of the liquid depth on plate displacements is
insignificant.

The vertical displacements of the upper boundary have a discontinuity at the edge, which indicates that
the vertical displacement of the plate edge and the elevation of the free boundary at the edge are different. Figure
2 shows curves of displacement amplitudes of the plate edge |η+| and elevation of the free boundary at the edge
|η−| versus β. For small values of β (corresponding to small rigidity of the plate or long incident waves), the plate
behaves as a thin film and practically does not affect wave propagation; the plate oscillation amplitudes are close
to unity. With increase in β, the amplitude of plate edge oscillations grows and reaches a maximum after which it
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Fig. 1. Distribution of the amplitudes of plate displacements |η+| along x for different
values of β: solid and dashed curves correspond to H = 1 and 100, respectively.

Fig. 2 Fig. 3

Fig. 2. Amplitudes of free-boundary elevation at the edge |η−| (curves 1) and amplitudes of dis-
placements of the plate edge |η+| (curves 2) versus β: solid and dashed curves refer to H = 1 and
100, respectively.

Fig. 3. Amplitudes of the level difference ∆η versus β: solid curves refer to H = 1 and 10 and the
dashed curve refers to H =∞.

decreases monotonically and tends to zero as β → ∞ (large values of β correspond to a very rigid plate or short
incident waves).

The amplitude of liquid oscillations at the edge is almost equal to unity for β < 0.1. With increase in β,
it starts decreasing and reaches a minimum, after which it grows monotonically and reaches the asymptotic value
corresponding to an absolutely rigid plate. A comparison of the diagrams shows that the depth of the liquid has
a stronger effect on the liquid oscillation amplitude than on the plate oscillation amplitude. For small values of β,
the oscillation amplitude of the plate edge is larger than the oscillation amplitude of the liquid at the edge. For
large values of β, the plate practically does not oscillate, while the liquid oscillation amplitude is maximal.

Figure 3 shows the amplitudes of the difference in level between the plate and the liquid at the edge versus
β for H = 1, 10, and ∞ [8]. At small depth, the amplitude of liquid oscillations increases. With increase in β, the
amplitude of the level difference increases monotonically. If the plate thickness is smaller than the amplitude of the
level difference, the plate edge periodically comes out of the water and impacts on it. In this case, the water impact
should be taken into account, and another model must be used to describe this phenomenon.

Plate Strains. The plate strains are calculated from the formula exx = −hη′′(x)/2. The plate strain
amplitude in dimensionless variables is written as [7]

exx = Ahe(x)/(2l2), e(x) = η′′(x).

Distributions of dimensionless strain amplitudes e(x) over the plate for various values of β are given in Fig. 4. Due
to the boundary condition, the strains at the edge are equal to zero, and at a certain distance from the edge, the
strain amplitude reaches a maximum and then decreases to a corresponding value in the transmitted wave. The
strain amplitudes depend strongly on the liquid depth only for the small values of β and H. This is because the
wavenumber α0 depends strongly on the depth only for small values of β and H, and α0 →∞ as H → 0.
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Fig. 4. Distributions of dimensionless strain amplitudes
e(x) for β = 10−4 (1), 10−2 (2), 1 (3), and 102 (4): solid
and dashed curves refer to H = 1 and 100.

TABLE 1
Dimensionless Coordinates of the Maximum Strain Points on the Plate

H
log β

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

1 0.04 0.09 0.16 0.60 ∞ 0.45 0.46 0.47 0.47 0.47 0.47 0.48 0.48
∞ 0.05 0.08 0.13 0.51 1.9 0.45 0.45 0.45 0.45 0.44 0.44 0.44 0.43

Table 1 gives dimensionless coordinates of the maximum strain points on the plate (normalized by the length
of the transmitted wave λ = 2πl/α0) for different values of β at H = 1 and ∞ [8]. These are the maximum stress
points (at these points, fractures and cracks are most probable) located rather close to the plate edge. In some ranges
of values of β, the location of these points changes abruptly: −1.5 < log β < −1 for H = 1 and −1 6 log β < −0.75
for H =∞. In these ranges, the ratio of the maximum strain amplitude to the strain amplitude in the transmitted
wave is insignificant. Hence, it is not so important to know precisely the location of these points, and the maximum
strain amplitude nearly coincides with the strain amplitude in the transmitted wave.

Pressure on the Plate. The dimensionless hydrodynamic pressure on the plate is determined from the
relation p = −ρ(ϕt + gη+) or p = i(ϕ−ϕy). Substituting representation (4) for the potential into the last equation,
we find the expression for the pressure on the plate:

p(x, 0) = −iβγ2K−(−γ)
∞∑

j=−2

eiαjx
α2
jK1(−αj)

K−(−αj)K ′2(αj)(γ − αj)
. (8)

Here, as above, the main contribution is from the undamped wave with wavenumber α0, while the remaining terms
represent the edge effects decaying exponentially away from the edge.

The pressure amplitude in the transmitted wave p∞ is linked to the corresponding potential amplitude |T |
by the relation p∞ = |K1(α0)||T | and is calculated from the formula

p∞ =
2|K1(α0)|
γ + α0

√
γ|K ′1(γ)|

tanh (α0H)|K ′2(α0)|
.

Figure 5 shows the pressure amplitudes p∞ versus β for various values of H. Here the effect of the liquid depth
is significant. In a liquid of infinite depth, as β → ∞, the pressure amplitude at infinity p∞ tends to zero (to the
pressure at infinity for an absolutely rigid plate). In a liquid of finite depth, the pressure at infinity tends to a
constant because the pressure at infinity is finite for a rigid plate. As H →∞, this constant tends to zero.

The pressure amplitude at the edge p0 is defined by the formula p0 = ∆η (see Fig. 3). The liquid depth
effect is significant for large values of β. Figure 6 shows distributions of pressure amplitudes over the plate for
H = 1 and various values of β. As can be seen from Fig. 6, the pressure amplitude is nonmonotonic along x and
reaches a maximum at the edge; as x → ∞, it tends to a finite value that corresponds to the pressure amplitude
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Fig. 5 Fig. 6

Fig. 5. Pressure amplitudes p∞ in the transmitted wave versus β for various values of H.

Fig. 6. Distributions of pressure amplitudes |p| over the plate for H = 1 and various values of β.

in the transmitted wave. As β → 0, the pressure tends to zero. Although, the absolute value of all terms of (8)
decay monotonically with increase in x, the mismatch between the phases leads to nonmonotonicity of the pressure
amplitude over x. The corresponding pressure distribution over the plate for an infinitely deep liquid is given in [8].
A comparison of the diagrams shows that the pressure amplitude distribution over the plate depends strongly on
the liquid depth: as H decreases, the pressure amplitude increases.
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